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Proportion of Variation Explained by Genetic Instruments

To fix the proportion vG of variation in the risk factor explained by the genetic variants, we adjusted
the residual variance σ2

0 in our simulations accordingly. We first specified a value for vG and generated
SNP-risk factor associations βXj as described in the simulation design section of the manuscript. The
value of σ2

0 was then set equal to
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where Gref is the reference genetic matrix. This can be justified by recalling that in our simulation
design,

X =
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j=1
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with U, εX ∼ N(0, σ2
0). Taking variances, we have that Var(X) = Var(GβX) + 2σ2

0 and therefore,
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which yields the previous expression for σ2
0. A similar formula was derived in the appendix of Yang

et al. (2012).

Additional Simulations - Large G-X Sample Size

To augment the analysis presented in the paper, we compared the various cis-MR methods in a
range of additional simulations. This section contains simulation results for a simulation using a
larger sample size of N1 = 100000 to compute summary-level risk factor-outcome associations. This
scenario may represent an applied analysis using a downstream biomarker as a proxy for protein
expression, as this would allow researchers to obtain summary-level data from existing large-scale
GWAS studies whose sample size often ranges in the hundreds of thousands. This was the case for
the two real-data applications presented in the main part of our manuscript.

We conducted simulations both for the SHBG and for the HMGCR region, with six causal variants
per region, as in our main simulations. For brevity, we only considered the “strong instruments”
scenario, where vG = 3% for the SHBG region and vG = 2% for the HMGCR region. Otherwise,
the simulations reported here were set up in the same way as those reported in the main part of our
paper. Results are reported in Table 1.

A notable difference in the results compared to our main simulations was that a larger sample
size resulted in stronger instruments. A tenfold increase in the sample size resulted in a similar,
tenfold increase in the values of the F statistics. For a regression using only the six causal variants,
the average F statistic was 514 for the SHBG and 340 for the HMGCR region. As a result, the
various cis-MR methods were less affected by weak instruments bias and performed quite well. The
performance of the stepwise pruning method was was much more consistent for different values of
ρ than in the corresponding simulation with N1 = 10000. PCA and JAM were both unaffected by
weak instrument bias for θ = 0.1. Confidence intervals constructed using these methods practically
attained nominal coverage, and so did the confidence intervals based on F-LIML and CLR. A small
reduction in power for single-SNP analysis and LD-pruning with low correlation thresholds were the
only real difference between the various methods. This was the case both for the SHBG and for the
HMGCR region.

These results imply that weak instrument bias is less likely to affect analyses based on large G−X
sample sizes, and stepwise pruning does not underperform other methods in such analyses.

Additional Simulations - Fewer Causal Variants

In our second set of additional simulations, we modified the number of causal variants that were
present in each region. Focusing on the SHBG region, we considered two additional scenarios.

First, we assumed the existence of only a single causal variant in the region, placing the causal
signal at the variant that had the smallest univariate p-value in our real-data application (rs1799941).
That variant was assumed to have an effect of βXj = 0.38 on the risk factor, the same as that observed
in our real SHBG-testosterone dataset.

In the second scenario, we generated three independent genetic effects on the risk factor. The
effects were placed at genetic variants suggested as independently causal by Jin et al. (2012), who
analysed genetic associations of variants in the SHBG region with serum testosterone levels. Genetic
effects for the causal variants were drawn randomly according to βXj ∼ |N(0, 0.2)| + 0.1 for the
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Table 1: Performance of cis-MR methods in simulations for various values of the causal effect pa-
rameter θ, using genetic variants from two gene regions (SHBG and HMGCR), ”strong” genetic
instruments (corresponding F statistics ¿ 10) and a large G−X sample size (N1 = 100000).

θ = 0 θ = 0.05 θ = 0.1

Method θ̂ se(θ̂) Type I θ̂ se(θ̂) Cov Power θ̂ se(θ̂) Cov
SHBG Region

Top SNP —– -0.001 0.019 0.063 0.050 0.020 0.951 0.710 0.101 0.020 0.952
Pruning ρ = 0.1 -0.001 0.016 0.054 0.050 0.016 0.943 0.868 0.100 0.016 0.954

ρ = 0.3 -0.001 0.014 0.039 0.050 0.014 0.946 0.940 0.099 0.015 0.958
ρ = 0.5 -0.001 0.014 0.041 0.050 0.014 0.946 0.949 0.099 0.014 0.956
ρ = 0.7 -0.001 0.013 0.033 0.049 0.014 0.947 0.944 0.098 0.014 0.952
ρ = 0.9 -0.001 0.013 0.036 0.048 0.013 0.949 0.941 0.095 0.014 0.941

PCA k = 0.99 0.000 0.015 0.038 0.051 0.015 0.950 0.909 0.100 0.016 0.957
k = 0.999 0.000 0.014 0.040 0.051 0.015 0.944 0.939 0.100 0.015 0.959

JAM ρ = 0.6 -0.001 0.014 0.037 0.050 0.014 0.947 0.951 0.100 0.014 0.959
ρ = 0.8 -0.001 0.013 0.038 0.051 0.014 0.949 0.948 0.100 0.014 0.953
ρ = 0.9 0.000 0.013 0.040 0.051 0.014 0.947 0.952 0.100 0.014 0.960
ρ = 0.95 0.000 0.013 0.038 0.051 0.014 0.952 0.951 0.100 0.014 0.960

F-LIML —– -0.001 0.014 0.046 0.051 0.015 0.952 0.919 0.100 0.015 0.961
CLR —– —– —– 0.044 —– —– 0.949 0.919 —– —– 0.958

HMGCR Region
Top SNP —– 0.000 0.019 0.055 0.050 0.019 0.950 0.738 0.100 0.020 0.951
Pruning ρ = 0.1 0.000 0.018 0.048 0.050 0.018 0.956 0.769 0.100 0.019 0.956

ρ = 0.3 0.000 0.017 0.051 0.049 0.018 0.947 0.795 0.099 0.018 0.951
ρ = 0.5 0.000 0.017 0.048 0.050 0.017 0.950 0.818 0.099 0.018 0.941
ρ = 0.7 0.000 0.016 0.048 0.049 0.017 0.947 0.836 0.098 0.017 0.942
ρ = 0.9 0.000 0.016 0.048 0.048 0.017 0.956 0.821 0.096 0.017 0.938

PCA k = 0.99 0.000 0.017 0.047 0.050 0.017 0.956 0.815 0.100 0.018 0.947
k = 0.999 0.000 0.017 0.049 0.050 0.017 0.956 0.819 0.100 0.018 0.948

JAM ρ = 0.6 0.000 0.017 0.049 0.050 0.017 0.952 0.816 0.099 0.018 0.937
ρ = 0.8 0.000 0.017 0.048 0.050 0.017 0.955 0.827 0.100 0.017 0.942
ρ = 0.9 0.000 0.017 0.045 0.050 0.017 0.957 0.829 0.099 0.017 0.938
ρ = 0.95 0.000 0.017 0.049 0.050 0.017 0.951 0.825 0.099 0.018 0.942

F-LIML —– 0.000 0.017 0.049 0.051 0.017 0.952 0.825 0.100 0.018 0.949
CLR —– —– —– 0.049 —– —– 0.947 0.823 —– —– 0.947
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Table 2: Performance of cis-MR methods in simulations for various values of the causal effect parame-
ter θ, using genetic variants from the SHBG gene region, ”strong” genetic instruments (corresponding
F statistics ¿ 10) and either 1 or 3 causal variants.

θ = 0 θ = 0.05 θ = 0.1

Method θ̂ se(θ̂) Type I θ̂ se(θ̂) Cov Power θ̂ se(θ̂) Cov
One Causal Variant

Top SNP —– 0.001 0.013 0.046 0.051 0.014 0.952 0.966 0.100 0.014 0.937
Pruning ρ = 0.1 0.001 0.013 0.046 0.051 0.014 0.952 0.966 0.100 0.014 0.937

ρ = 0.3 0.001 0.013 0.047 0.050 0.014 0.953 0.961 0.099 0.014 0.932
ρ = 0.5 0.001 0.013 0.045 0.049 0.014 0.949 0.956 0.096 0.014 0.920
ρ = 0.7 0.001 0.013 0.047 0.047 0.013 0.947 0.959 0.093 0.014 0.899
ρ = 0.9 0.001 0.012 0.050 0.043 0.013 0.918 0.934 0.086 0.013 0.767

PCA k = 0.99 0.000 0.015 0.053 0.050 0.016 0.946 0.882 0.099 0.016 0.924
k = 0.999 0.001 0.014 0.051 0.048 0.014 0.952 0.922 0.096 0.015 0.919

JAM ρ = 0.6 0.001 0.013 0.046 0.051 0.014 0.952 0.965 0.100 0.014 0.938
ρ = 0.8 0.001 0.013 0.046 0.051 0.014 0.952 0.966 0.100 0.014 0.938
ρ = 0.9 0.001 0.013 0.046 0.051 0.014 0.953 0.966 0.100 0.014 0.938
ρ = 0.95 0.001 0.013 0.046 0.051 0.014 0.953 0.966 0.100 0.014 0.938

F-LIML —– 0.001 0.014 0.061 0.051 0.015 0.944 0.936 0.100 0.016 0.942
CLR —– —– —– 0.047 —– —– 0.951 0.928 —– —– 0.955

Three Causal Variants
Top SNP —– 0.000 0.016 0.051 0.050 0.016 0.956 0.852 0.098 0.017 0.934
Pruning ρ = 0.1 0.000 0.015 0.047 0.049 0.016 0.953 0.868 0.097 0.016 0.928

ρ = 0.3 0.000 0.014 0.046 0.049 0.014 0.942 0.919 0.096 0.015 0.930
ρ = 0.5 0.000 0.013 0.049 0.047 0.014 0.945 0.928 0.095 0.014 0.915
ρ = 0.7 0.000 0.013 0.046 0.046 0.013 0.931 0.934 0.091 0.014 0.867
ρ = 0.9 0.000 0.012 0.042 0.041 0.013 0.891 0.904 0.083 0.013 0.724

PCA k = 0.99 0.000 0.015 0.051 0.049 0.015 0.941 0.884 0.096 0.016 0.932
k = 0.999 0.000 0.014 0.047 0.047 0.014 0.944 0.905 0.095 0.015 0.925

JAM ρ = 0.6 0.000 0.014 0.046 0.049 0.014 0.945 0.939 0.097 0.015 0.930
ρ = 0.8 0.000 0.014 0.046 0.049 0.014 0.946 0.938 0.097 0.014 0.929
ρ = 0.9 0.000 0.014 0.046 0.049 0.014 0.942 0.943 0.097 0.014 0.923
ρ = 0.95 0.000 0.013 0.044 0.049 0.014 0.946 0.948 0.097 0.014 0.929

F-LIML —– 0.000 0.014 0.060 0.050 0.014 0.932 0.933 0.100 0.016 0.949
CLR —– —– —– 0.049 —– —– 0.940 0.919 —– —– 0.959

risk-increasing allele, same as what we did for the six-causal-variants simulation in the main part of
our paper.

Otherwise, the simulations were set up as previously described. We used the “strong instruments”
scenario with vG = 3% and a G −X sample size of N1 = 10000. Simulation results are reported in
Table 2.

The results closely resembled the ones for our original simulation scenario with “strong instru-
ments” and six causal variants. All methods were quite accurate for θ = 0. When θ 6= 0, stepwise
pruning was subject to weak instrument bias to some extent, especially for large correlation thresh-
olds. The performance of the method depended on the correlation threshold used. PCA and JAM
were more consistent in terms of their tuning parameters and were generally quite accurate, while
factor-based methods were even more accurate, with a small inflation of Type I error rates under the
null for F-LIML.

Most methods performed slightly better with one than with three causal variants, but the differ-
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ences in their performance were small and it seems that the number of causal signals in the region
should have little impact on the choice of which cis-MR method to use. An exception relates to the
use of the top-SNP approach, which was expectedly quite accurate when only a single causal variant
existed in the region. With three causal variants, top-SNP analysis was subject to the same issues
as in our original simulations (namely larger standard errors and lower power than other methods),
but to a lesser degree.

Additional Simulations - Small Reference Dataset

In our third set of additional simulations, we wanted to assess the impact of the reference dataset
on the various MR methods. In particular, we assessed whether the use of a small reference dataset,
which would imply inaccurate genetic correlation estimates, affects some cis-MR methods worse than
others. We therefore repeated the simulations from the main part of our paper, but bootstrapped the
rows of the UK Biobank matrix and only selected Nref = 1000 individuals from which to compute
genetic correlations, instead of using the entire UK Biobank dataset of Nbb = 367643 individu-
als. In practice, using small datasets as reference data is not uncommon: for example, the 1000
genomes dataset is commonly used for this purpose. The use of a small reference dataset does not
systematically bias the estimated genetic covariance matrix, as would be the case with population
stratification.

We used both genetic regions and the “strong instruments” scenario. Again, the simulation design
was identical to those reported in the main part of the paper, except using a smaller reference dataset.
Results are reported in Table 3.

The JAM algorithm proved to be more sensitive to the reference dataset. The algorithm adjusts
marginal SNP-trait associations using the reference genetic correlations. By using an inaccurate
correlation pattern, the algorithm’s adjustment was adversely affected and this resulted in selecting
more genetic variants than in runs with a larger reference dataset. This was especially the case for
large values of the correlation threshold, in which case the pre-pruning step only discards a small
number of variants before running JAM. For example, for the SHBG region with θ = 0 and ρ = 0.95,
the algorithm had a posterior model size of 9.27 compared to 3.75 when the entire UK Biobank was
used as a reference dataset. This meant that the algorithm was more susceptible to weak instrument
bias, made JAM causal effect estimates slightly more variable for larger ρ values and increased Type
I error rates. For smaller values of the correlation threshold the algorithm’s performance was affected
less.

The performance of LD-pruning also attenuated for large values of its correlation threshold, but
this attenuation was in line with what we observed in our original simulations, using a large reference
dataset. Likewise, principal components analysis and factor-based methods seemed fairly robust to
using a smaller reference dataset.
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Table 3: Performance of cis-MR methods in simulations for various values of the causal effect pa-
rameter θ, using genetic variants from two gene regions (SHBG and HMGCR), ”strong” genetic
instruments (corresponding F statistics ¿ 10) and a smaller reference sample (Nref = 1000).

θ = 0 θ = 0.05 θ = 0.1

Method θ̂ se(θ̂) Type I θ̂ se(θ̂) Cov Power θ̂ se(θ̂) Cov
SHBG Region

Top SNP —– -0.001 0.019 0.039 0.048 0.019 0.941 0.676 0.095 0.020 0.917
Pruning ρ = 0.1 -0.001 0.016 0.046 0.048 0.016 0.925 0.799 0.095 0.017 0.892

ρ = 0.3 0.000 0.014 0.045 0.048 0.014 0.942 0.900 0.095 0.015 0.901
ρ = 0.5 0.000 0.013 0.049 0.047 0.014 0.933 0.914 0.093 0.014 0.892
ρ = 0.7 0.000 0.013 0.048 0.046 0.013 0.917 0.916 0.090 0.014 0.863
ρ = 0.9 0.000 0.012 0.057 0.043 0.012 0.871 0.900 0.084 0.013 0.750

PCA k = 0.99 0.000 0.015 0.041 0.049 0.015 0.939 0.883 0.097 0.015 0.922
k = 0.999 0.000 0.014 0.052 0.048 0.014 0.925 0.904 0.094 0.015 0.919

JAM ρ = 0.6 0.000 0.014 0.038 0.047 0.014 0.937 0.896 0.093 0.015 0.906
ρ = 0.8 0.000 0.014 0.039 0.047 0.014 0.922 0.896 0.092 0.014 0.887
ρ = 0.9 0.000 0.014 0.063 0.047 0.014 0.910 0.895 0.092 0.014 0.867
ρ = 0.95 0.000 0.014 0.093 0.047 0.014 0.888 0.885 0.091 0.014 0.843

F-LIML —– 0.000 0.014 0.052 0.050 0.014 0.921 0.907 0.099 0.016 0.929
CLR —– —– —– 0.040 —– —– 0.929 0.895 —– —– 0.933

HMGCR Region
Top SNP —– -0.001 0.018 0.047 0.048 0.018 0.951 0.753 0.099 0.019 0.921
Pruning ρ = 0.1 -0.001 0.018 0.048 0.048 0.018 0.951 0.757 0.099 0.019 0.919

ρ = 0.3 -0.001 0.017 0.056 0.047 0.017 0.951 0.770 0.097 0.018 0.928
ρ = 0.5 -0.001 0.016 0.052 0.047 0.017 0.947 0.807 0.096 0.017 0.920
ρ = 0.7 -0.001 0.016 0.052 0.046 0.016 0.943 0.818 0.093 0.017 0.893
ρ = 0.9 0.000 0.014 0.113 0.042 0.015 0.836 0.785 0.084 0.015 0.735

PCA k = 0.99 -0.001 0.017 0.047 0.048 0.017 0.950 0.816 0.098 0.018 0.921
k = 0.999 0.000 0.016 0.051 0.047 0.017 0.949 0.814 0.097 0.017 0.922

JAM ρ = 0.6 -0.001 0.017 0.047 0.047 0.018 0.949 0.782 0.096 0.018 0.933
ρ = 0.8 -0.001 0.017 0.062 0.046 0.017 0.934 0.794 0.094 0.018 0.910
ρ = 0.9 0.000 0.017 0.093 0.045 0.017 0.895 0.790 0.093 0.018 0.859
ρ = 0.95 -0.001 0.017 0.150 0.044 0.017 0.824 0.759 0.092 0.018 0.791

F-LIML —– -0.001 0.016 0.052 0.049 0.017 0.941 0.825 0.101 0.019 0.945
CLR —– —– —– 0.049 —– —– 0.945 0.810 —– —– 0.942
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